Understanding the interaction of single-walled carbon nanotube (SWCNT) on estrogen receptor: A combined molecular dynamics and experimental study
Ecotoxicology and Environmental Safety, ISSN: 0147-6513, Vol: 172, Page: 373-379
2019
- 12Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef10
- Captures15
- Readers15
- 15
Article Description
Considering the large-scale production of diversified nanomaterials, it is paramount importance to unravel the structural details of interactions between nanoparticles and biological systems, and thus to explore the potential adverse impacts of nanoparticles. Estrogen receptors (ER) is one of the most important receptor of human reproductive system and the binding of carbon nanotubes to estrogen receptors was the possible trigger leading to the reproductive toxicity of carbon nanotubes. Thus, with single-walled carbon nanotube (SWCNT) treated as model nanomaterials, a combination of in vivo experiments, spectroscopy assay and molecular dynamic modeling was applied to help us unravel some important issues on the binding characterization between SWCNT and the ligand binding domain (LBD) of ER alpha (ERα). The fluorescence assay and molecular dynamics simulations together validated the binding of SWCNT to ERα, suggesting the possible molecular initiating event. As a consequence, SWCNT binding led to a conformational change on tertiary structure levels and hydrophobic interaction was recognized as the driving force governing the binding behavior between SWCNT and LBD of ERα. A in vivo process presented that the exposure of SWCNT increased ERα expression from 26.43 pg/ml to 259.01 pg/ml, suggesting a potential estrogen interference effects of SWCNT. Our study offers insight on the binding of SWCNT and ERα LBD at atomic level, helpful to accurately evaluate the potential health risks of SWCNT.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0147651319301277; http://dx.doi.org/10.1016/j.ecoenv.2019.01.101; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85060923080&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/30731268; https://linkinghub.elsevier.com/retrieve/pii/S0147651319301277; https://dx.doi.org/10.1016/j.ecoenv.2019.01.101
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know