Responses of catalase and superoxide dismutase to low-dose quantum dots on molecular and cellular levels
Ecotoxicology and Environmental Safety, ISSN: 0147-6513, Vol: 181, Page: 388-394
2019
- 23Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes23
- 23
- CrossRef20
- Captures12
- Readers12
- 12
Article Description
With the wider application of cadmium-containing quantum dots (Cd-QDs) in biomedical fields, it is easier for people to be exposed. Studies have suggested that Cd-QDs could release cadmium ion and induce oxidative effects due to the disruption of redox equilibrium. Antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), play an important role in organisms to resist the negative impact of exogenous substances. Molecular mechanisms of antioxidant enzymes with Cd-QDs remain unclear, however. In this study, structural and functional changes of CAT and SOD have been investigated under low dose Cd-QDs exposure. Cell viability, malondialdehyde (MDA) level, CAT and SOD activities were influenced by Cd-QDs in hepatocytes of mice. To further investigate the responses of CAT and SOD to Cd-QDs, multiple spectroscopic, calorimetric and activity measurements were carried out. Similar interaction patterns were observed that result in interaction force, structural and functional changes: Cd-QDs combine with CAT and SOD through hydrophobic forces; Intrinsic fluorescence of proteins was statically quenched by Cd-QDs and new complexes were formed; Also, the skeleton and secondary structure (with α-helix decrease) of CAT and SOD was influenced. Taken together, we suggest that Cd-QDs chosen in this study induce oxidative stress effects to hepatocytes but have not caused serious oxidative stress damage at concentrations below 10 μg/mL. MPA-CdSe/ZnS QDs caused the lowest level of oxidative stress which is associated with the induction of antioxidant proteins. This paper presents responses of CAT and SOD to low-dose Cd-QDs, and provides a reference for evaluating health damages caused by Cd-QDs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0147651319306669; http://dx.doi.org/10.1016/j.ecoenv.2019.06.028; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85067283327&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31212187; https://linkinghub.elsevier.com/retrieve/pii/S0147651319306669; https://dx.doi.org/10.1016/j.ecoenv.2019.06.028
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know