Transcriptome survey and toxin measurements reveal evolutionary modification and loss of saxitoxin biosynthesis genes in the dinoflagellates Amphidinium carterae and Prorocentrum micans
Ecotoxicology and Environmental Safety, ISSN: 0147-6513, Vol: 195, Page: 110474
2020
- 20Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations20
- Citation Indexes20
- 20
- CrossRef19
- Captures30
- Readers30
- 30
Article Description
In the present study, we characterized the potential toxin genes for polyketide synthase (PKS) and saxitoxin (STX) biosynthesis using the transcriptomes of two non-STX producing dinoflagellates Amphidinium carterae and Prorocentrum micans. RNA sequencing revealed 94 and 166 PKS contigs in A. carterae and P. micans, respectively. We first detected type III PKS, which was closely related to bacteria. In addition, dozens of homologs of 20 STX biosynthesis genes were identified. Interestingly, the core STX-synthesizing genes sxtA and sxtB were only found in P. micans, whereas sxtD was detected in A. carterae alone. Bioinformatic analysis showed that the first two core genes ( sxtA and sxtG ) had a low sequence similarity (37.0–67.6%) and different domain organization compared to those of other toxigenic dinoflagellates, such as Alexandrium pacificum. These might result in the breakdown of the initial reactions in STX production and ultimately the loss of the ability to synthesize the toxins in both dinoflagellates. Our findings suggest that toxin-related PKS and sxt genes are commonly found in non-STX producing dinoflagellates. In addition to their involvement in the synthesis of toxins, our result indicates that genes may also have other molecular metabolic functions.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0147651320303134; http://dx.doi.org/10.1016/j.ecoenv.2020.110474; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85082109503&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32200147; https://linkinghub.elsevier.com/retrieve/pii/S0147651320303134; https://dx.doi.org/10.1016/j.ecoenv.2020.110474
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know