PlumX Metrics
Embed PlumX Metrics

Transcriptome survey and toxin measurements reveal evolutionary modification and loss of saxitoxin biosynthesis genes in the dinoflagellates Amphidinium carterae and Prorocentrum micans

Ecotoxicology and Environmental Safety, ISSN: 0147-6513, Vol: 195, Page: 110474
2020
  • 20
    Citations
  • 0
    Usage
  • 30
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

In the present study, we characterized the potential toxin genes for polyketide synthase (PKS) and saxitoxin (STX) biosynthesis using the transcriptomes of two non-STX producing dinoflagellates Amphidinium carterae and Prorocentrum micans. RNA sequencing revealed 94 and 166 PKS contigs in A. carterae and P. micans, respectively. We first detected type III PKS, which was closely related to bacteria. In addition, dozens of homologs of 20 STX biosynthesis genes were identified. Interestingly, the core STX-synthesizing genes sxtA and sxtB were only found in P. micans, whereas sxtD was detected in A. carterae alone. Bioinformatic analysis showed that the first two core genes ( sxtA and sxtG ) had a low sequence similarity (37.0–67.6%) and different domain organization compared to those of other toxigenic dinoflagellates, such as Alexandrium pacificum. These might result in the breakdown of the initial reactions in STX production and ultimately the loss of the ability to synthesize the toxins in both dinoflagellates. Our findings suggest that toxin-related PKS and sxt genes are commonly found in non-STX producing dinoflagellates. In addition to their involvement in the synthesis of toxins, our result indicates that genes may also have other molecular metabolic functions.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know