Bacterial diversity, community composition and metabolic function in Lake Tianmuhu and its dammed river: Effects of domestic wastewater and damming
Ecotoxicology and Environmental Safety, ISSN: 0147-6513, Vol: 213, Page: 112069
2021
- 34Citations
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations34
- Citation Indexes34
- 34
- CrossRef5
- Captures40
- Readers40
- 40
Article Description
Anthropogenic disturbances, such as pollution discharge and damming, can lead to a global decline in biodiversity in aquatic ecosystems. However, how such disturbances affect microbial community composition and function remains poorly understood. In November 2019, we explored bacterial diversity, community composition and metabolic function in Lake Tianmuhu, China, and in its upstream dammed river, using Illumina MiSeq sequencing and Biolog EcoPlate method based on carbon source utilization. Our results revealed higher variations in bacterial α - and β -diversity in the dammed river ecosystem than in the lake ecosystem. In addition, the dammed river and lake ecosystems were significantly different in bacterial community compositions and metabolic structures. No significant relationship between species richness and functional (metabolic) diversity was observed in this study. The site that was most impacted by domestic wastewater had the lowest taxonomic diversity but highest metabolic capacity and activity, suggesting that community composition rather than species diversity is more important in determining ecosystem functioning. Overall, our findings indicate that anthropogenic disturbances can significantly alter bacterial community and function, and taxonomic diversity is a weak proxy for ecosystem functioning in a natural freshwater habitat.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0147651321001809; http://dx.doi.org/10.1016/j.ecoenv.2021.112069; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101359831&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33631636; https://linkinghub.elsevier.com/retrieve/pii/S0147651321001809; https://dx.doi.org/10.1016/j.ecoenv.2021.112069
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know