Computational modeling of animal behavior in T-mazes: Insights from machine learning
Ecological Informatics, ISSN: 1574-9541, Vol: 81, Page: 102639
2024
- 2Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study investigates the intricacies of animal decision-making in T-maze environments through a synergistic approach combining computational modeling and machine learning techniques. Focusing on the binary decision-making process in T-mazes, we examine how animals navigate choices between two paths. Our research employs a mathematical model tailored to the decision-making behavior of fish, offering analytical insights into their complex behavioral patterns. To complement this, we apply advanced machine learning algorithms, specifically Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and a hybrid approach involving Principal Component Analysis (PCA) for dimensionality reduction followed by SVM for classification to analyze behavioral data from zebrafish and rats. The above techniques result in high predictive accuracies, approximately 98.07% for zebrafish and 98.15% for rats, underscoring the efficacy of computational methods in decoding animal behavior in controlled experiments. This study not only deepens our understanding of animal cognitive processes but also showcases the pivotal role of computational modeling and machine learning in elucidating the dynamics of behavioral science.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S157495412400181X; http://dx.doi.org/10.1016/j.ecoinf.2024.102639; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85194348154&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S157495412400181X; https://dx.doi.org/10.1016/j.ecoinf.2024.102639
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know