Microbes require a relatively long time to recover in natural succession restoration of degraded grassland ecosystems
Ecological Indicators, ISSN: 1470-160X, Vol: 129, Page: 107881
2021
- 31Citations
- 45Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Using natural succession to restore degraded grassland is mainly achieved by self-adjusting the structure and relationship of the internal components of grassland ecosystems. Microorganisms play an important role in the restoration of grassland ecosystems; however, there is no systematic research summary on how microbial communities respond to natural restoration succession in degraded grasslands. In this study, related research results in recent years were summarized and analyzed using meta-analysis. Results showed that soil microbes displayed no significant changes at the early stage (≤5 years) of natural restoration succession, but significantly increased at the following stage (6–10 years) of restoration succession, before decreasing with the continuation of succession. Changes in microbial activity mainly occurred in the 0–20 cm soil depth layer. Numbers of bacteria, fungi, and actinomycetes significantly increased at the six to 10 year stage of restoration succession. When restoration succession ceased after 10 years, most microorganisms began to decrease. During natural restoration succession, the diversity of fungi and bacteroidetes increased, while chloroflexi diversity decreased. These results indicated that the optimal period for the natural restoration succession of degraded grassland was approximately 10 years to ensure that the microbes of the grassland system returned to relatively high levels.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1470160X2100546X; http://dx.doi.org/10.1016/j.ecolind.2021.107881; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107623917&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1470160X2100546X; https://dx.doi.org/10.1016/j.ecolind.2021.107881
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know