Regression estimators for aboveground biomass and its constituent parts of trees in native southern Brazilian forests
Ecological Indicators, ISSN: 1470-160X, Vol: 130, Page: 108025
2021
- 20Citations
- 42Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The mathematical models used applying the Nonlinear Seemingly Unrelated Regressions (NSUR) or Weighted Nonlinear Seemingly Unrelated Regressions (WNSUR) methodologies can contribute to generate acceptable and reliable estimates of total aboveground biomass and its constituent parts, which are needed to implement forest management strategies to maintain desirable and sustainable carbon stocks. The aim of this study was: 1) to fit the sample data with independent nonlinear regression models and present the results obtained from the respective statistical estimates for total biomass aboveground and the constituent parts of trees in native forest trees. 2) To fit the sample data with regression models simultaneously, that is, whose models are composed of appropriate combinations of their coefficients, in order to obtain additivity of the estimates and present better results for the total aboveground biomass and the constituent parts of the trees. 3) To apply weighting procedures to the variances of the fitted models. 4) To evaluate the error due to the regression function on forest biomass estimation. The data came from eight sites located in the states of Parana and Rio Grande do Sul, Brazil, and information was collected on diameter at 1.30 m aboveground ( DBH ), total height, biomasses of the trunk components (branches and leaves) and total aboveground biomass. Non-linear functions were independently and simultaneously fitted, using DBH and total height as independent variables in the regression models. Independent fitting of equations was performed using generalized nonlinear least squares (ENGLS) and simultaneous fitting of equations was obtained by means of NSUR. Weighting, by applying a variance structure in the two procedures, was done to solve the issue of heteroscedasticity. Numerically, the equations fitted simultaneously performed better and were more efficient than the independently fitted models, which resulted in biological inconsistency, that is, non-additivity of the biomass of constituent parts of the trees and the total biomass. Simultaneous fitting generated superior statistical and biological properties to obtain tree estimates of the of constituent parts of the trees and total aboveground biomass in native forests of southern Brazil. The smaller error due to the regression function used in the forest biomass inventory was obtained by simultaneous fitting. With these results, the procedure using simultaneous and weighted fitting of equations (WNSUR) is recommended to fit biomass equations for native forests in southern Brazil.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1470160X21006907; http://dx.doi.org/10.1016/j.ecolind.2021.108025; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111293206&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1470160X21006907; https://api.elsevier.com/content/article/PII:S1470160X21006907?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S1470160X21006907?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.ecolind.2021.108025
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know