GRAAL-CN: A model of GRowth, Architecture and ALlocation for Carbon and Nitrogen dynamics within whole plants formalised at the organ level
Ecological Modelling, ISSN: 0304-3800, Vol: 206, Issue: 3, Page: 231-249
2007
- 48Citations
- 98Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A functional–structural model has been developed to analyse the dynamics between morphogenetic processes and assimilate (carbon and nitrogen) management processes, the dynamics between carbon and nitrogen metabolism (acquisition and allocation) as well as the regulations of those processes during the vegetative development of individual plants. It associates models of plant morphogenesis and models simulating the growth of plant compartments as related to assimilate availability. Using object-oriented modelling methods, knowledge is formalised at the organ level (local rules of development and resource management), and the behaviour of the plant arises from interactions between those organs and the integration of the processes into the whole plant. Shoot and root organs are initiated as a function of temperature. Using the source–sink concept, organ growth is calculated from its individual potential growth and assimilate availability within the plant. Simulations using maize illustrate the capacity of the model to mimic the main features of plants in relation to development and resource allocation (e.g., dynamics of root:shoot ratio for carbon and nitrogen, changes in priority between organs as well as plant plasticity to assimilate availability). Conceptually, the model constitutes a generic framework for testing and sorting out hypotheses on functioning processes involved in plant development. In the fields of systems biology and ecology, it is a highly suitable tool for analysing the interactions between genotypic and environmental characteristics affecting plant behaviour.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304380007001810; http://dx.doi.org/10.1016/j.ecolmodel.2007.03.036; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=34447621271&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0304380007001810; https://dx.doi.org/10.1016/j.ecolmodel.2007.03.036
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know