Selective inhibition of histone deacetylase 3 by novel hydrazide based small molecules as therapeutic intervention for the treatment of cancer
European Journal of Medicinal Chemistry, ISSN: 0223-5234, Vol: 238, Page: 114470
2022
- 23Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A promising hydrazide based small molecule lead as a potent and selective histone deacetylase 3 (HDAC3) inhibitor has been developed from a small series of synthesized novel chemical entities. The lead compound ( 4e) displayed high HDAC3 inhibitory potency (IC 50 = 15.41 nM) and a minimum of 18-fold selectivity over other HDAC isoforms. It also exhibited potent cytotoxicity against several cancer cell lines with minimal toxicity against normal cell lines tested. Compound 4e also enhanced acetylation levels on H3K9, H4K12 and H3K27 both in vitro and in vivo. It also induced cell cycle arrest at the G2/M phase in B16F10 and 4T1 cells. It caused significant apoptosis and upregulated the expression of caspase-3, caspase-7, cytochrome c and downregulated the expression of BCL2 in tumour tissue. In addition, the downregulation of CD44, EGFR and Ki-67 suggested the potential of compound 4e in reducing cell proliferation and metastasis in mice. Further, a marked decrease in the tumour volume was observed with no general toxicity in the major organs when treated with 4e in the 4T1-Luc xenograft mouse model. Therefore, compound 4e is a promising candidate selectively targeting HDAC3 with a significant antitumour activity that can be evaluated further in preclinical and clinical evaluation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0223523422003725; http://dx.doi.org/10.1016/j.ejmech.2022.114470; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130549916&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35635949; https://linkinghub.elsevier.com/retrieve/pii/S0223523422003725; https://dx.doi.org/10.1016/j.ejmech.2022.114470
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know