An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem
European Journal of Operational Research, ISSN: 0377-2217, Vol: 200, Issue: 2, Page: 395-408
2010
- 292Citations
- 250Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Distributed and Flexible Job-shop Scheduling problem (DFJS) considers the scheduling of distributed manufacturing environments, where jobs are processed by a system of several Flexible Manufacturing Units (FMUs). Distributed scheduling problems deal with the assignment of jobs to FMUs and with determining the scheduling of each FMU, in terms of assignment of each job operation to one of the machines able to work it (job-routing flexibility) and sequence of operations on each machine. The objective is to minimize the global makespan over all the FMUs. This paper proposes an Improved Genetic Algorithm to solve the Distributed and Flexible Job-shop Scheduling problem. With respect to the solution representation for non-distributed job-shop scheduling, gene encoding is extended to include information on job-to-FMU assignment, and a greedy decoding procedure exploits flexibility and determines the job routings. Besides traditional crossover and mutation operators, a new local search based operator is used to improve available solutions by refining the most promising individuals of each generation. The proposed approach has been compared with other algorithms for distributed scheduling and evaluated with satisfactory results on a large set of distributed-and-flexible scheduling problems derived from classical job-shop scheduling benchmarks.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0377221709000113; http://dx.doi.org/10.1016/j.ejor.2009.01.008; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=69249206751&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0377221709000113; https://dx.doi.org/10.1016/j.ejor.2009.01.008
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know