Evaluating solutions and solution sets under multiple objectives
European Journal of Operational Research, ISSN: 0377-2217, Vol: 294, Issue: 1, Page: 16-28
2021
- 3Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study we address evaluating solutions and solution sets that are defined by multiple objectives based on a function. Although any function can be used, we focus on mostly weighted Tchebycheff functions that can be used for a variety of purposes when multiple objectives are considered. One such use is to approximate a decision maker’s preferences with a Tchebycheff utility function. Different solutions can be evaluated in terms of expected utility conditional on weight values. Another possible use is to evaluate a set of solutions that approximate a Pareto set. It is not straightforward to find the Pareto set, especially for large-size multi-objective combinatorial optimization problems. To measure the representation quality of approximate Pareto sets and to compare such sets with each other, there are some performance indicators such as the hypervolume measure, the ε indicator, and the integrated preference functional (IPF) measure. A Tchebycheff function based IPF measure can be used to estimate how well a set of solutions represents the Pareto set. We develop the necessary theory to practically evaluate solutions and solution sets. We develop a general algorithm and demonstrate it for two, three, and four objectives.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0377221721000230; http://dx.doi.org/10.1016/j.ejor.2021.01.021; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100436170&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0377221721000230; https://dx.doi.org/10.1016/j.ejor.2021.01.021
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know