Impact of covalently Nile Red and covalently Rhodamine labeled fluorescent polymer micelles for the improved imaging of the respective drug delivery system
European Journal of Pharmaceutics and Biopharmaceutics, ISSN: 0939-6411, Vol: 142, Page: 480-487
2019
- 18Citations
- 31Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef10
- Captures31
- Readers31
- 31
Article Description
Novel fluorescently labeled poly(ethylene glycol)-poly(hydroxyoctanoic acid) (MPEG-PHOA) block-copolymers were synthesized for the improved visualization of the deriving polymeric micelle drug delivery system. Albeit commonly used, one has to be aware that by simple incorporation of Nile Red (hydrophobic) or Rhodamine B (hydrophilic) as fluorescent compounds in nanocarriers (e.g., nanoparticles, liposomes or micelles) for imaging applications, these fluorescent probes can diffuse out of the carrier system and lead to artefacts due to the concomitant fluorescence loss or areal distribution. In order to inhibit such an uncontrolled diffusion, the Nile Red derivative 2-((9-(diethylamino)-5-oxo-5H-benzo[ a ]phenoxazin-2-yl)oxy)acetic acid was synthesized and covalently attached to the MPEG-PHOA block-copolymer via a mild Mitsunobu reaction to yield the desired MPEG-PHOA-Nile Red polymer for micelle preparations. Rhodamine B was coupled via its native carboxylic acid group with the copolymer MPEG-PHOA under mild conditions using DMAP, EDC, and NHS. For the proof of concept, aqueous solutions of composite micelles made of 0.5% (w/w fluorescence dye) MPEG-PHOA-dye and MPEG-PHOA copolymers were prepared (“spiking” of the non-labeled base MPEG-PHOA micelles) and characterized by transmission electron microscopy (TEM), dialysis and fluorescence spectrometry. The fluorescence intensity of the Nile Red in the solutions was followed up at physiological temperatures and pH values (37 °C, pH = 7.4 PBS buffer 0.01 M) over a period of 8 weeks. The labeled and non-labeled micelle formulations were tested in vitro in cells (Rhodamine-micelle formulations), then in vivo in a case study of an ophthalmic application (Nile Red micelle formulations). Both in vitro and in vivo experiments revealed a significant improvement of fluorescence stability of the MPEG-PHOA-dye formulations, facilitating the investigations on tracing the micelles and their stability. The results clearly demonstrate the value of the novel Nile Red and Rhodamine derivatives, whose simple synthesis and covalent attachment may easily be transferred to other nanosized polymeric drug delivery systems, e.g., MPEGylated or non-MPEGylated PLA/PLGA nanoparticles and be envisioned for novel theranostic systems.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0939641119300670; http://dx.doi.org/10.1016/j.ejpb.2019.07.020; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85069693811&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31336183; https://linkinghub.elsevier.com/retrieve/pii/S0939641119300670; https://dx.doi.org/10.1016/j.ejpb.2019.07.020
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know