Studying the effects of polymers on therapeutic deep eutectic solvents’ formation and stability: A thermal analysis-based approach to optimise polymer selection
European Journal of Pharmaceutics and Biopharmaceutics, ISSN: 0939-6411, Vol: 210, Page: 114685
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Therapeutic deep eutectic solvents (THEDES) are the liquids produced upon mixing two solid materials, where at least one of them is an active pharmaceutical ingredient. The strong hydrogen bonding (HB) between the parent materials is the reason for such profound depression in their melting points. THEDES formation can improve drugs’ solubility and permeation characteristics. However, this can be limited by their encapsulation within drug delivery platforms e.g., polymeric matrices which might disrupt the HB network of THEDES by introducing new HB active sites into the mixture. Despite this, the effects of polymers on THEDES stability are not well-documented. In addition, the polymers’ impact on THEDES formation during end-to-end production has not been studied. In this work, these issues were addressed by employing thermal processing of polymers and drugs. The dually active lidocaine: flurbiprofen (1:1) THEDES was utilized in addition to model polymers, namely polyethylene-co-vinyl acetate (PEVA), polyethylene oxide (PEO) and Eudragit® RL PO (EuRLPO). Firstly, probing the interaction between the polymers and the individual components of THEDES revealed that PEVA has no affinity towards both drugs while PEO can interact with flurbiprofen, and EuRLPO can interact with lidocaine. Then, to study the effect of the polymers on THEDES formation and stability, a valid in-situ method was developed to quantify THEDES in its mixture using modulated temperature differential scanning calorimetry (MTDSC). MTDSC data showed that the three polymers retarded THEDES formation in the following order PEVA < EuRLPO < PEO. This retardation was attributed to increased medium viscosity and the subsequent reduction in THEDES formation rate. Increasing the heating time led to complete THEDES formation in the case of PEVA and EuRLPO but not with PEO. This result was explained based on the polymers’ interaction with THEDES parent drugs and inputs from polymers’ viscoelastic properties. On the other hand, introducing the polymer after THEDES formation mitigated their viscosity effect but their interaction with the parent drugs remained an issue, where PEO and EuRLPO were able to destabilize the pre-formed THEDES to variable extents. Long-term storage stability study further confirmed this conclusion. Therefore, this study will provide valuable information regarding the interaction (or lack of) of THEDES with model pharmaceutical polymers that have been thermally processed and will provide recommendations regarding the rational choice of polymers to maintain THEDES stability.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S093964112500061X; http://dx.doi.org/10.1016/j.ejpb.2025.114685; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=86000351666&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/40037470; https://linkinghub.elsevier.com/retrieve/pii/S093964112500061X
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know