Physiologically-based pharmacokinetic modelling to investigate the effect of CYP3A4/3A5 maturation on tacrolimus pharmacokinetics in paediatric HSCT patients
European Journal of Pharmaceutical Sciences, ISSN: 0928-0987, Vol: 201, Page: 106839
2024
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
Tacrolimus (FK506) is a cornerstone of GVHD-prophylaxis treatment in paediatrics undergoing haematopoietic stem cell transplantation (HSCT). However, due to concerns about highly inter/intra-individual variability, precision dosing of FK506 is crucial. Cytochrome P450 (CYP) 3A4 and 3A5 are considered important sources of FK506 pharmacokinetic variability. Nevertheless, the impact of age-related maturation in hepatic and intestinal CYP3A4/3A5 enzymes remains unknown in paediatric HSCT patients. Physiologically-based pharmacokinetic (PBPK) models were developed and verified in adult volunteers and adult HSCT patients using GastroPlus™ ( version 9.0), and then extrapolated to paediatric HSCT patients, taking into account the maturation of CYP3A4 and CYP3A5. Default CYP3A4 and CYP3A5 ontogeny profiles were updated based on the latest reports. The paediatric PBPK model was evaluated with independent data collected from Sun Yat-sen Memorial Hospital (86 paediatric HSCT patients, 1 to 16 -year-old). Simulations were performed to evaluate a reported FK506 dosing regimen in infants and children with different CYP3A5 genotypes. Extensive PBPK model validation indicated good predictability, with the predicted/observed (P/O) ratios within the range of 0.80-fold to 1.25-fold. Blood tacrolimus concentration-time curves were comparable between the real and virtual patients. Simulations showed that the higher levels of tacrolimus in 9-month-old to 3-year-old infants were mainly attributed to the CYP3A4/3A5 ontogeny profiles, which resulted in lower clearance and higher exposure relative to dose. The oral dosage of 0.1 mg/kg/day (q12 h) is considered appropriate for paediatric HSCT patients 9 months to 15 years of age with CYP3A5 *1/*1 genotypes. Lower doses were required for paediatric HSCT patients with CYP3A5 *1/*3 ( 0.08 mg/kg/day, q12h) or CYP3A5 *3/*3 genotypes ( 0.07 mg/kg/day, q12h), and analyses demonstrated 12.5–20 % decreases in ≤3-year-old patients. The study highlights the feasibility of PBPK modelling to explore age-related enzyme maturation in infants and children (≤3-year-old) undergoing HSCT and emphasizes the need to include hepatic and gut CYP3A4/3A5 maturation parameters.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0928098724001519; http://dx.doi.org/10.1016/j.ejps.2024.106839; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199150091&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38906231; https://linkinghub.elsevier.com/retrieve/pii/S0928098724001519; https://dx.doi.org/10.1016/j.ejps.2024.106839
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know