Development of real-time individualized risk prediction models for contrast associated acute kidney injury and 30-day dialysis after contrast enhanced computed tomography
European Journal of Radiology, ISSN: 0720-048X, Vol: 167, Page: 111034
2023
- 4Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures26
- Readers26
- 26
Article Description
This study aimed to develop preprocedural real-time artificial intelligence (AI)-based systems for predicting individualized risks of contrast-associated acute kidney injury (CA-AKI) and dialysis requirement within 30 days following contrast-enhanced computed tomography (CECT). This single-center, retrospective study analyzed adult patients from emergency or in-patient departments who underwent CECT; 18,895 patients were included after excluding those who were already on dialysis, had stage V chronic kidney disease, or had missing data regarding serum creatinine levels within 7 days before and after CECT. Clinical parameters, laboratory data, medication exposure, and comorbid diseases were selected as predictive features. The patients were randomly divided into model training and testing groups at a 7:3 ratio. Logistic regression (LR) and random forest (RF) were employed to create prediction models, which were evaluated using receiver operating characteristic curves. The incidence rates of CA-AKI and dialysis within 30 days post-CECT were 6.69% and 0.98%, respectively. For CA-AKI prediction, LR and RF exhibited similar performance, with areas under curve (AUCs) of 0.769 and 0.757, respectively. For 30-day dialysis prediction, LR (AUC, 0.863) and RF (AUC, 0.872) also exhibited similar performance. Relative to eGFR-alone, the LR and RF models produced significantly higher AUCs for CA-AKI prediction (LR vs. eGFR alone, 0.769 vs. 0.626, p < 0.001) and 30-day dialysis prediction (RF vs. eGFR alone, 0.872 vs. 0.738, p < 0.001). The proposed AI prediction models significantly outperformed eGFR-alone for predicting the CA-AKI and 30-day dialysis risks of emergency department and hospitalized patients who underwent CECT.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0720048X23003480; http://dx.doi.org/10.1016/j.ejrad.2023.111034; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85172256839&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37591134; https://linkinghub.elsevier.com/retrieve/pii/S0720048X23003480; https://dx.doi.org/10.1016/j.ejrad.2023.111034
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know