Evaluating the hydrological regime alteration under extreme climate scenarios in Southeast China
Journal of Hydrology: Regional Studies, ISSN: 2214-5818, Vol: 54, Page: 101860
2024
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures11
- Readers11
- 11
Article Description
The Shanmei Reservoir Watershed (SRW), Southeast China. This study investigated the climate and hydrological regimes alterations in a subtropical coastal watershed (SRW) during the 21st century in extreme scenarios. The extreme scenarios, i.e., warm-wet and cold-dry climates, were constructed using 18 global climate models (GCMs) from CMIP6 under shared socioeconomic pathways (SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5). The Soil and Water Assessment Tool (SWAT) model and Indicators of Hydrologic Alteration (IHA) were applied to quantify the impacts of climate change on the eco-hydrological regimes during the projected period (2041–2100) compared to the base period (1980–2014). The results show that the average temperature rises by 0.6–3.8 ℃, and the average annual precipitation changes by −21.4 % - 32.4 % by the end of the 21st century under extreme scenarios. Contrasting hydrological regimes are expected in the SRW under extreme scenarios. Under the extreme warm-wet scenarios, the monthly runoff is lower during spring and higher during summer, the minimum flows are significantly higher, and the maximum and minimum flows occurs earlier. Water resource utilization and ecosystem health are expected to improve. However, the opposite holds true in the cold-dry scenarios. The hydrologic regime alteration under future extreme climate scenarios can guide local water planning and ecological restoration strategies.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2214581824002088; http://dx.doi.org/10.1016/j.ejrh.2024.101860; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85195483755&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2214581824002088; https://dx.doi.org/10.1016/j.ejrh.2024.101860
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know