Prediction of summer precipitation via machine learning with key climate variables:A case study in Xinjiang, China
Journal of Hydrology: Regional Studies, ISSN: 2214-5818, Vol: 56, Page: 101964
2024
- 2Citations
- 7Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New Machine Learning Study Findings Have Been Reported by Investigators at Institute of Desert Meteorology (Prediction of Summer Precipitation Via Machine Learning With Key Climate Variables:a Case Study In Xinjiang, China)
2024 DEC 02 (NewsRx) -- By a News Reporter-Staff News Editor at Daily China News -- Research findings on Machine Learning are discussed in a
Article Description
Study region: Xinjiang is located in the mid-latitude region of Eurasia in northwestern China. Precipitation is predominantly concentrated in northern Xinjiang, while southern Xinjiang remains comparatively arid. Summer precipitation accounts for 54.4 % of the annual total. Study focus: This study aims to develop a machine learning model to predict summer precipitation (June–August) in XJ and explore the key variables contributing to summer precipitation in this region. The SHapley Additive exPlanations method was integrated with an extreme tree model to quantify the contributions of variables towards precipitation. Artificial neural networks, support vector machines, and extreme gradient boosting were considered to predict summer precipitation. To train the ML model, we used precipitation data from 1961 to 2012, whilst the forecast results from 2013 to 2017 were used for validation. New hydrological insights for the regions: The results demonstrated that the ANN model achieved robust performance during both the training and validation periods. For Northern and Southern XJ, the Mean Absolute Error and Root Mean Square Error of the ANN model were 15.34 (20.40) and 23.21 (30.01), respectively. The SHAP analysis showed that in the context of Northern Xinjiang, the Niño B Sea Surface Temperature Anomaly, Western Pacific Subtropical High Intensity, Pacific Subtropical High Intensity, and Multivariate ENSO Index play crucial roles in the prediction of summer precipitation. In Southern Xinjiang, the South China Sea Subtropical High Intensity, South China Sea Subtropical High Area, Western Pacific Warm Pool Strength, and Atlantic multidecadal oscillation have emerged as key variables affecting summer precipitation forecasting.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2214581824003136; http://dx.doi.org/10.1016/j.ejrh.2024.101964; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85203988344&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2214581824003136; https://dx.doi.org/10.1016/j.ejrh.2024.101964
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know