Egypt's water future: AI predicts evapotranspiration shifts across climate zones
Journal of Hydrology: Regional Studies, ISSN: 2214-5818, Vol: 56, Page: 101968
2024
- 2Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Egypt is a country located in northeastern Africa. The research evaluated the random forest (RF) and extreme gradient boosting (XGB) as single models and the models' hybrid to predict the ETo for the baseline and future (2015–2099) period from Shared Socioeconomic Pathways (SSP1–26, SSP2–45 and SSP5–85) based on 18 GCMs models. The hybrid model has performed better than single models; compared RF and XGB to RF-XGB, the RMSE values were decreased in all zones esepically in zone 3 by 16.2 %, these results indicate that the highest performances of all models are observed in the middle and south Egypt, which exhibit the strongest correlation between temperature and ETo. For the SSP5–8.5 scenario, the ETo increased over the years for all zones; the ETo will increase by 4.38 %,3.71 %, 4.27 %, 2.16 %, 3.26 %, 1.35 %, 5.22 % at the year 2099 compared to the year 2015 for zone 1, 2, 3, 4, 5, 6 and 7 respectively. The T min and T max are the most critical factors that affect the ETo in all zones in the baseline and future scenarios. This study provides important insights into applying machine learning models to estimate ETo and its implications for future water management strategies. Such models hold promise for significantly enhancing regional agricultural water-resource planning and management.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know