pH dependent kinetic insights of electrocatalytic arsenite oxidation reactions at Pt surface
Electrochimica Acta, ISSN: 0013-4686, Vol: 225, Page: 105-113
2017
- 26Citations
- 28Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Kinetics of electrocatalytic oxidation of arsenite ions has been investigated at a Pt disk electrode using cyclic voltammetry, convolution potential sweep voltammetry and electrochemical impedance spectroscopy. A complimentary environment pertaining to oxidation reactions of arsenite ions is attained in the acidic medium compared to a neutral or basic medium. It is suggested that in the neutral and basic media, direct electron transfer from the solution to electrode instigate the oxidation process without any pre adsorption. Meanwhile, in the acidic medium, prior to oxidation, arsenite ions are adsorbed on the Pt surface and a stepwise reaction mechanism is involved. Using impedance analysis, it is suggested that different forms of surface oxides at various pH values control the oxidation kinetics.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0013468616326019; http://dx.doi.org/10.1016/j.electacta.2016.12.055; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85007154335&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0013468616326019; https://dx.doi.org/10.1016/j.electacta.2016.12.055
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know