Self-restriction to form in-situ N,P co-doped carbon-coated LiFePO 4 nanocomposites for high-performance lithium ion batteries
Electrochimica Acta, ISSN: 0013-4686, Vol: 414, Page: 140161
2022
- 27Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Olivine-type lithium iron phosphate LiFePO 4 (LFP) is widely used as the cathode for lithium ion batteries in electric vehicles due to its excellent structural stability and low cost. Herein, LFP/C composites are prepared using expired beer as carbon source, which exhibits environmentally friendly benignity and provides a uniform N, P in-situ co-doped carbon layer. On one side, the polysaccharides and monosaccharides in beer has strong steric hindrance ability, which inhibits the growth of particles during sintering. On the other side, the uniform N, P co-doping tunes the electron cloud of the carbon layer, improving the electronic conductivity. As a result, the as-prepared LFP/C composite shows enhanced rate capabilities and structural stability. In detail, the material delivers the initial specific discharge capacity of 134 mAh•g −1 with capacity retention of 94.5% after 1000 cycles at a high rate of 5 C. Even at a higher rate of 10 C, it has a specific discharge capacity of 123 mAh•g −1. Besides, the LFP/C displays enhanced low-temperature performance compared to conventional carbon-coated LFP. Therefore, this work demonstrates the advantages of using expired beer as carbon source for LFP cathode material, which is also feasible for other carbon-coated cathode or anode materials, beneficial for increasing the power density of lithium ion batteries.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0013468622003334; http://dx.doi.org/10.1016/j.electacta.2022.140161; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85126541824&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0013468622003334; https://dx.doi.org/10.1016/j.electacta.2022.140161
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know