Deep reinforcement learning to optimise indoor temperature control and heating energy consumption in buildings
Energy and Buildings, ISSN: 0378-7788, Vol: 224, Page: 110225
2020
- 150Citations
- 222Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work, Deep Reinforcement Learning (DRL) is implemented to control the supply water temperature setpoint to terminal units of a heating system. The experiment was carried out for an office building in an integrated simulation environment. A sensitivity analysis is carried out on relevant hyperparameters to identify their optimal configuration. Moreover, two sets of input variables were considered for assessing their impact on the adaptability capabilities of the DRL controller. In this context a static and dynamic deployment of the DRL controller is performed. The trained control agent is tested for four different scenarios to determine its adaptability to the variation of forcing variables such as weather conditions, occupant presence patterns and different indoor temperature setpoint requirements. The performance of the agent is evaluated against a reference controller that implements a combination of rule-based and climatic-based logics. As a result, when the set of variables are adequately selected a heating energy saving ranging between 5 and 12% is obtained with an enhanced indoor temperature control with both static and dynamic deployment. Eventually the study proves that if the set of input variables are not carefully selected a dynamic deployment is strictly required for obtaining good performance.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378778820308963; http://dx.doi.org/10.1016/j.enbuild.2020.110225; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85086731368&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378778820308963; https://dx.doi.org/10.1016/j.enbuild.2020.110225
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know