Explaining daily energy demand in British housing using linked smart meter and socio-technical data in a bottom-up statistical model
Energy and Buildings, ISSN: 0378-7788, Vol: 258, Page: 111845
2022
- 29Citations
- 82Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper investigates factors associated with variation in daily total (electricity and gas) energy consumption in domestic buildings using linked pre-COVID-19 smart meter, weather, building thermal characteristics, and socio-technical survey data covering appliance ownership, demographics, behaviours, and attitudes for two nested sub-samples of 1418 and 682 British households selected from the Smart Energy Research Laboratory (SERL) Observatory panel. Linear mixed effects modelling resulted in adjusted R 2 between 63% and 80% depending on sample size and combinations of contextual data used. Increased daily energy consumption was significantly associated ( p -value < 0.05, VIF < 5) with: households living in buildings with more rooms and bedrooms, that are older, more detached, have air-conditioning, and experience colder (more heating degree days) or less sunny weather; households with more adult occupants, more children, older adult occupants, higher heating temperature setpoints, and that do not try to save energy. The results demonstrate the value of smart meter data linked with contextual data for improving understanding of energy demand in British housing. Accredited UK researchers are invited to apply to access the data, which has recently been updated to include over 13,000 households from across Great Britain. This paper provides guidance on appropriate methods to use when analysing the data.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378778822000160; http://dx.doi.org/10.1016/j.enbuild.2022.111845; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85123049322&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378778822000160; https://dx.doi.org/10.1016/j.enbuild.2022.111845
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know