A robust physics-based model framework of the dew point evaporative cooler: From fundamentals to applications
Energy Conversion and Management, ISSN: 0196-8904, Vol: 233, Page: 113925
2021
- 12Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Owing to its great energy efficiency, dew point evaporative cooling is an ideal solution for cooling of electronics, data centers and electric vehicles, where a large amount of sensible heat is generated. To promote the application of dew point evaporative coolers, a common research gap between theoretical and experimental studies is addressed, i.e., how fundamental understanding can be turned into practical applications? In this paper, a coupled scaling and regression analysis is proposed as the key approach to linking the physics-based model to fast data-driven optimization. Accordingly, a complete model framework is developed for the dew point evaporative cooler by establishing a core regression model with its governing dimensionless numbers. The model is integrated with a robust multi-objective optimization algorithm for real applications. Instant predictions of product air temperature and maximum pressure drop can be obtained from the regression model, while it still retains some physical insights into how the cooling performance is affected by the dominant factors. A few optimization studies are carried out to navigate the optimal design and control strategies of the dew point evaporative cooler under assorted ambient conditions. It is noted that the regression model can accurately predict the experimental data of two coolers within ± 5.0% maximum discrepancy, and subsequent optimization suggests improved cooler designs with 30%–60% enhancement in energy efficiency, compared to an existing cooler prototype.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0196890421001011; http://dx.doi.org/10.1016/j.enconman.2021.113925; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101334382&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0196890421001011; https://dx.doi.org/10.1016/j.enconman.2021.113925
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know