Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines
Energy, ISSN: 0360-5442, Vol: 158, Page: 396-416
2018
- 103Citations
- 119Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper addresses the optimal working fluid selection for organic Rankine cycle recovering heat from heavy-duty internal combustion engines. Four cases are considered featuring two different engine exhaust temperatures (245 °C vs 354 °C) and two scenarios (maximum recovery of mechanical power vs. cogeneration of low-temperature heat). The analysis includes both pure fluids, including recently synthesized refrigerants, and binary mixtures. To perform a fair comparison between the different fluids, a computationally efficient cycle optimization approach, able to determine the maximum achievable efficiency for each working fluid, is adopted. The approach combines the evolutionary optimization algorithm PGS-COM with a rigorous heat integration methodology. The most efficient fluids are HCFO-1233zde, HFE-245fa2, HFO-1336mzz, HFE-347mcc, HFE-245cb2 and Novec 649 for the engine with lower temperature exhausts (reaching an ORC mechanical efficiency of 18.6–19.9%), and cyclopentane, ammonia, HCFO-1233zde, HFE-245fa2, HFO-1366mzz for the engine with higher temperature (reaching 23.76–22.70% efficiency). Compared to pure fluids, the use of optimized binary mixtures does not appear to lead a considerable efficiency gain.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360544218310703; http://dx.doi.org/10.1016/j.energy.2018.06.017; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85048765602&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360544218310703; https://api.elsevier.com/content/article/PII:S0360544218310703?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0360544218310703?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.energy.2018.06.017
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know