PlumX Metrics
Embed PlumX Metrics

Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging

Energy, ISSN: 0360-5442, Vol: 229, Page: 120606
2021
  • 36
    Citations
  • 0
    Usage
  • 54
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    36
    • Citation Indexes
      36
  • Captures
    54

Article Description

Current defect inspection methods for photovoltaic (PV) devices based on electroluminescence (EL) imaging technology lack juggling both labor-saving and in-depth understanding of defects, restricting the progress towards yield improvement and higher efficiency. Herein, we propose an adaptive approach for automatic solar cell defect detection and classification based on absolute EL imaging. Specifically, we first develop an unsupervised algorithm to automatically detect defects referring to the defect features in EL images. Then a diagnosis approach is proposed, which statistically classifies the detected defects based on the electrical origin. To the best of our knowledge, the proposed method is the first effort to integrate automatic defect detection with fine-grained classification. Experimental results on multiple types of solar cells show that the proposed method can achieve the average uncertainty of 5.15% at the minimum, with by up to 98.90% optimization ratio compared with two conventional methods. The proposed method is expected to provide more guiding feedback in both practical design and reliability diagnosis of the PV industry.

Bibliographic Details

Youyang Wang; Liying Li; Yifan Sun; Jinjia Xu; Yun Jia; Jianyu Hong; Xiaobo Hu; Guoen Weng; Xianjia Luo; Shaoqiang Chen; Ziqiang Zhu; Junhao Chu; Hidefumi Akiyama

Elsevier BV

Engineering; Mathematics; Energy; Environmental Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know