Scaling of wave energy converters for optimum performance in the Adriatic Sea
Energy, ISSN: 0360-5442, Vol: 294, Page: 130922
2024
- 11Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The wave energy potential in the Adriatic Sea is investigated at seven offshore locations, and the mean annual energy, average electric power production, operating hours, as well as the coefficient of variation of the monthly power production are determined for three wave energy converters. Since wave energy converters are commonly designed and optimized to extract energy from ocean waves, they have low capacity factors in low-energy seas or bays such as the Adriatic Sea, where the sea states are slight to moderate. The scaling of the wave energy converters is performed on the basis of the Froude scaling law for AquaBuoy and Pelamis devices. The results of WECs at eleven scales are compared with those obtained for a Lysekil WEC. The obtained results show that the capacity factors of the downscaled WECs increase significantly at their optimum scales, reaching about 29 % and 42 % for the AquaBuoy and Pelamis, respectively, depending on the location. By comparing the results obtained for the AquaBuoy and Pelamis at a scale of 0.7 with the results of a full-scale Lysekil WEC, it may be concluded that the downscaled WECs may be more suitable for the considered locations in the Adriatic Sea while keeping their economic viability.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360544224006947; http://dx.doi.org/10.1016/j.energy.2024.130922; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85187780192&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360544224006947; https://dx.doi.org/10.1016/j.energy.2024.130922
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know