Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD
Energy, ISSN: 0360-5442, Vol: 296, Page: 131173
2024
- 20Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Wind speed prediction is a crucial aspect in the utilization of wind energy. In this paper, a wind speed prediction model based on an outlier-robust ensemble deep random vector functional link network (ORedRVFL) and arithmetic optimization algorithm-optimized variational mode decomposition (AOA-VMD) is designed. First, the penalty factor and the number of mode decompositions of VMD are optimized using the AOA algorithm and the original data are decomposed using the optimized VMD. Then the decomposed data is predicted using the ensemble deep random vector functional link network (edRVFL) model. The edRVFL uses rich intermediate features for the final decision, which can make the final result closer to the real data. In order to strengthen the anti-interference ability to the outliers, this paper robustly improves the edRVFL model, and the improved model is called ORedRVFL. ORedRVFL reduces the impact of outliers by introducing regularization and norm to balance the relationship between training error and weights. The experiments have proved that the model proposed in this paper outperforms other models in terms of anti-interference ability and prediction accuracy.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360544224009460; http://dx.doi.org/10.1016/j.energy.2024.131173; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189760538&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360544224009460; https://dx.doi.org/10.1016/j.energy.2024.131173
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know