The boundary element method applied to orthotropic shear deformable plates
Engineering Analysis with Boundary Elements, ISSN: 0955-7997, Vol: 37, Issue: 4, Page: 738-746
2013
- 10Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This work presents a formulation for thick plates following Mindlin theory. The fundamental solution takes into account an assumed displacement distribution on the thickness, and was derived by means of Hormander operator and the Radon transform. To compute the inverse Radon transform of the fundamental solution, some numerical integrals need to be computed. How these integrations are carried out is a key point in the performance of the boundary element code. Two approaches to integrate fundamental solutions are discussed. Integral equations are obtained using Betti's reciprocal theorem. Domain integrals are exactly transformed into boundary integrals by the radial integration technique.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0955799712002214; http://dx.doi.org/10.1016/j.enganabound.2012.11.009; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84875127052&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0955799712002214; https://dx.doi.org/10.1016/j.enganabound.2012.11.009
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know