Boundary element method for hypersingular integral equations: Implementation and applications in potential theory
Engineering Analysis with Boundary Elements, ISSN: 0955-7997, Vol: 169, Page: 105999
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The main objective of this paper is to develop effective numerical methods to solve hypersingular integral equations arising in various physical and mechanical applications. Both surface and contour integrals are considered. The novelty of the proposed approach lies in the exact formulas obtained for an arbitrary planar polygon in hypersingular integral estimations. A one-dimensional hypersingular integral equation is derived for axially symmetrical configurations, and analytical formulas are established for calculating the hypersingular parts. It is proved that the hypersingular component of the surface integral is equal to its hypersingular component along the tangent plane. These exact formulas enable the development of an effective numerical method based on boundary element implementation. Benchmark tests are considered, and the convergence of the proposed methods is demonstrated. Problems in crack analysis are formulated and solved using both surface and contour hypersingular integral equations. A comparison of the results is made between boundary element methods and finite element methods for penny-shaped cracks. Boundary value problems in fluid-structure interaction are considered, and numerical simulations are performed. An estimation of modes and frequencies of panel and blade vibrations when interacting with liquids is carried out.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know