Towards dense people detection with deep learning and depth images
Engineering Applications of Artificial Intelligence, ISSN: 0952-1976, Vol: 106, Page: 104484
2021
- 5Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper describes a novel DNN-based system, named PD3net, that detects multiple people from a single depth image, in real time. The proposed neural network processes a depth image and outputs a likelihood map in image coordinates, where each detection corresponds to a Gaussian-shaped local distribution, centered at each person’s head. This likelihood map encodes both the number of detected people as well as their position in the image, from which the 3D position can be computed. The proposed DNN includes spatially separated convolutions to increase performance, and runs in real-time with low budget GPUs. We use synthetic data for initially training the network, followed by fine tuning with a small amount of real data. This allows adapting the network to different scenarios without needing large and manually labeled image datasets. Due to that, the people detection system presented in this paper has numerous potential applications in different fields, such as capacity control, automatic video-surveillance, people or groups behavior analysis, healthcare or monitoring and assistance of elderly people in ambient assisted living environments. In addition, the use of depth information does not allow recognizing the identity of people in the scene, thus enabling their detection while preserving their privacy. The proposed DNN has been experimentally evaluated and compared with other state-of-the-art approaches, including both classical and DNN-based solutions, under a wide range of experimental conditions. The achieved results allows concluding that the proposed architecture and the training strategy are effective, and the network generalize to work with scenes different from those used during training. We also demonstrate that our proposal outperforms existing methods and can accurately detect people in scenes with significant occlusions.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0952197621003328; http://dx.doi.org/10.1016/j.engappai.2021.104484; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85116617726&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0952197621003328; https://dx.doi.org/10.1016/j.engappai.2021.104484
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know