A dynamic clustering ensemble learning approach for crude oil price forecasting
Engineering Applications of Artificial Intelligence, ISSN: 0952-1976, Vol: 123, Page: 106408
2023
- 21Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Accurate oil price forecasts matter, yet the nonstationarity of oil prices makes forecasting a challenging task. In this study, we propose a dynamic ensemble forecasting method for nonstationary oil prices using clustering approaches. Specifically, clustering is embedded in the ensemble forecasting framework, whereby the given period of historical observations is automatically classified into several clusters according to the data characteristics. This classification provides a solid groundwork for dynamically evaluating individual forecasting models in a targeted manner. We then propose a clustering-based regular increasing monotone weight assignment strategy that removes the influence of outliers and assigns appropriate weights to each forecasting model, thereby balancing the competitiveness and robustness of the proposed ensemble model. We verify the competitiveness and robustness of the proposed model by using West TX Intermediate oil prices. Results show that the proposed model significantly outperforms benchmarks and state-of-the-art methods in terms of horizontal and directional accuracy and is thus competitive. The robustness of the proposed model is validated using scenarios involving parameter variation and data missing assumptions. In summary, we present a model with promising effectiveness in promoting prediction performance in forecasting oil prices.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0952197623005924; http://dx.doi.org/10.1016/j.engappai.2023.106408; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159150741&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0952197623005924; https://dx.doi.org/10.1016/j.engappai.2023.106408
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know