Review on prognostics and health management in smart factory: From conventional to deep learning perspectives
Engineering Applications of Artificial Intelligence, ISSN: 0952-1976, Vol: 126, Page: 107126
2023
- 11Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
At present, the fourth industrial revolution is pushing factories toward an intelligent, interconnected grid of machinery, communication systems, and computational resources. Smart factories (SF) and smart manufacturing (SM) incorporate a cyber-physical system that employs advanced technologies such as artificial intelligence (AI) for data analysis, automated process driving, and continuous data handling. Smart factories operate by combining machines, humans, and massive amounts of data into a single, digitally interconnected ecosystem. Prognostics and health management (PHM) has become a critical requirement of smart factories to meet production needs. PHM of components/machines in the smart factory is crucial for securing uninterrupted operation and ensuring safety standards. The growing availability of computational capacity has increased the use of deep learning in PHM strategies. Deep learning supports comprehensive PHM solutions, thus reducing the need for manual feature development. This review presents an extensive study of the PHM strategies employed in the smart factory ranging from the conventional perspective to the deep learning perspective. This includes consideration of the conventional methodologies used for health management along with latest trends in the PHM domain in the smart factory.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0952197623013106; http://dx.doi.org/10.1016/j.engappai.2023.107126; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171462140&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0952197623013106; https://dx.doi.org/10.1016/j.engappai.2023.107126
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know