A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information
Engineering Applications of Artificial Intelligence, ISSN: 0952-1976, Vol: 131, Page: 107865
2024
- 55Citations
- 50Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or nonlinear correlation indicator when evaluating variables relationships, which lacks diversity. Considering the complexity of the relationship between features, a novel feature selection evaluation function CONMI is constructed, which ensembles Pearson correlation coefficient (liner) and normalized mutual information (non-linear) to comprehensively portrays the dependencies between features and class variables. We further propose the CONMI_FS algorithm based on CONMI, which selects the optimal subset of features that has high correlation with the class variables and low redundancy between the selected features. CONMI_FS is compared with four methods on 20 datasets and evaluated by reduction rate, classification accuracy, precision and recall metrics on KNN, SVM and DT classifiers. The experimental results show that CONMI_FS obtains the highest reduction rate of 80.04%, and achieves the best classification accuracy on KNN and SVM classifiers, which are 88.83% and 88.98%, respectively. These results indicate that CONMI_FS has good competitiveness.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S095219762400023X; http://dx.doi.org/10.1016/j.engappai.2024.107865; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85182279734&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S095219762400023X; https://dx.doi.org/10.1016/j.engappai.2024.107865
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know