Dilated multilevel fused network for virus classification using transmission electron microscopy images
Engineering Applications of Artificial Intelligence, ISSN: 0952-1976, Vol: 138, Page: 109348
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Previous studies have demonstrated significant performance in the field of virus classification; however, they focused on the classification of a small number of virus classes, with a maximum of 16 classes. To address this limitation, this study aims to create a deep learning-based network that outperforms the state-of-the-art (SOTA) models for the classification of 22 different virus classes with the fewest possible trainable parameters. We introduce an automatic identification system for virus classes based on our classification-driven retrieval framework. The proposed dilated multilevel fused network (DMLF-Net) utilizes the multilevel feature fusion concept within a network to exploit more abstract features for microscopic data analysis. A multi-stage training strategy was applied to achieve optimal model convergence without overfitting the training data. We evaluated the performance of the DMLF-Net on three open databases including two virus datasets and one bacteria species dataset. The results demonstrated an accuracy of 89.89%, a weighted harmonic mean of precision and recall (F1-score) of 83.39%, and an area under the curve (AUC) of 92.50% for the 1st virus dataset. For the 2nd virus dataset, the accuracy was 80.70%, the F1-score was 81.20%, and the AUC was 86.20%. For the 3rd bacteria species dataset, the accuracy was 95.93% and the F1-score was 96.24%. DMLF-Net outperforms SOTA methods in terms of classification accuracy while utilizing nearly 5.3 times fewer trainable parameters (25.5 million) compared to the second-best model, visual geometry group (VGG)16 (134.3 million).
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0952197624015069; http://dx.doi.org/10.1016/j.engappai.2024.109348; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85204485228&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0952197624015069; https://dx.doi.org/10.1016/j.engappai.2024.109348
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know