An image processing approach for fatigue crack identification in cellulose acetate replicas
Engineering Failure Analysis, ISSN: 1350-6307, Vol: 164, Page: 108663
2024
- 1Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The cellulose acetate replication technique is an important method for studying material fatigue. However, extracting accurate information from pictures of cellulose replicas poses challenges because of distortions and numerous artifacts. This paper presents an image processing procedure for effective fatigue crack identification in plastic replicas. The approach employs thresholding, adaptive Gaussian thresholding, and Otsu binarization to convert gray-scale images into binary ones, enhancing crack visibility. Morphological operations refine object shapes, and Connected Components Analysis facilitates crack identification. Despite limited data, the handcrafted feature extraction algorithm proves robust, addressing challenges. The algorithm shows efficacy in detecting cracks as small as 30 μm, even in the presence of cellulose replication artifacts. The results highlight ability to capture significant cracks’ orientation, length, and growth stages, essential for understanding fatigue mechanisms. Analysis of results, especially evaluation metrics encompassing false positives and false negatives, provides a comprehensive understanding of the algorithm’s strengths and limitations. The proposed tool is available on GitHub.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S135063072400709X; http://dx.doi.org/10.1016/j.engfailanal.2024.108663; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199217277&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S135063072400709X; https://dx.doi.org/10.1016/j.engfailanal.2024.108663
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know