Concurrent modeling of martensitic transformation and crack growth in polycrystalline shape memory ceramics
Engineering Fracture Mechanics, ISSN: 0013-7944, Vol: 241, Page: 107403
2021
- 22Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Mechanical degradation of shape memory materials (SMM) has been a long-lasting challenge that has prevented the wider range of high-cycle applications of SMM. The core of the challenge is the limited current knowledge of how crack growth and martensitic transformation (MT) interact concurrently. In this paper, we study the dynamic interaction of MT and crack propagation in polycrystalline shape memory ceramics. We construct a multiphysics phase-field model that couples the Ginzburg-Landau theory of MT to the variational formulation of brittle fracture. The model is parameterized for tetragonal polycrystalline zirconia, and the experimental data from literature were used to validate the model. The model predicts the three dominant crack propagation patterns which was observed experimentally including the secondary crack initiation, crack branching, and grain bridging. The model shows the critical role of texture engineering in toughening enhancement. Polycrystalline zirconia samples with grains that make low angles between a -axis in tetragonal phase and the crack plane, show higher transformation toughening, due to maximum hydrostatic strain release perpendicular to the crack tip. The model also shows the grain boundary engineering as a way to enhance the transformation toughening. The maximum fracture toughness occurs at a specific grain size, and further coarsening or refinement reduces the fracture toughness. This optimum grain size is the consequence of the competition between the toughening enhancement and MT suppression with grain refinement.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0013794420309802; http://dx.doi.org/10.1016/j.engfracmech.2020.107403; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85096141423&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0013794420309802; https://api.elsevier.com/content/article/PII:S0013794420309802?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0013794420309802?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.engfracmech.2020.107403
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know