Atomistic analysis of 3D fracture fingerprints of mono- and bi-crystalline diamond and gold nanostructures
Engineering Fracture Mechanics, ISSN: 0013-7944, Vol: 263, Page: 108291
2022
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Gold and diamond are elements of advanced systems. Considering covalent and ionic character of gold versus completely covalent structure of diamond, visualization of fracture behavior of their nanocrystalline structures is the key to understanding their mechanical stability in order to smoothen manufacturing advanced nano-devices. Nevertheless, 3D patterns of their fracture are rarely investigated. In this work, we compare the mechanical properties of (1 1 1) diamond and (1 0 0) gold from molecular dynamics (MD) simulations perspective. The effects of the temperature, grain boundary, and pre-cracking on the Young's modulus, fracture stress, fracture strain, and stress–strain behavior are investigated. Overall, failure in diamond occurred along certain low-energy cleavage planes, as per a brittle fracture mode with no plastic deformation. Moreover, no significant reduction was detected in the fracture strength of diamond upon temperature rise up to 800 K; but at 1000 K it decreased by 10%., unlike 34% drop computed for gold. Compared to ideally perfect monocrystalline structure, the fracture strength and Young's modulus of the bicrystalline gold decreased by 60% and 8%, respectively. Moreover, the average maximal tensile stress was severely dependent on the strain magnitude. For the diamond, however, the tensile strength decreased about 31–38% depending on the crack initiation pattern, while Young's modulus decreased by nearly 24%. In the presence of defects, the maximal fracture stress of diamond and gold experienced a reduction by 33% and 54%, respectively.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S001379442200056X; http://dx.doi.org/10.1016/j.engfracmech.2022.108291; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124235459&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S001379442200056X; https://dx.doi.org/10.1016/j.engfracmech.2022.108291
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know