Genome-scale metabolic modeling in antimicrobial pharmacology
Engineering Microbiology, ISSN: 2667-3703, Vol: 2, Issue: 2, Page: 100021
2022
- 7Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The increasing antimicrobial resistance has seriously threatened human health worldwide over the last three decades. This severe medical crisis and the dwindling antibiotic discovery pipeline require the development of novel antimicrobial treatments to combat life-threatening infections caused by multidrug-resistant microbial pathogens. However, the detailed mechanisms of action, resistance, and toxicity of many antimicrobials remain uncertain, significantly hampering the development of novel antimicrobials. Genome-scale metabolic model (GSMM) has been increasingly employed to investigate microbial metabolism. In this review, we discuss the latest progress of GSMM in antimicrobial pharmacology, particularly in elucidating the complex interplays of multiple metabolic pathways involved in antimicrobial activity, resistance, and toxicity. We also highlight the emerging areas of GSMM applications in modeling non-metabolic cellular activities (e.g., gene expression), identification of potential drug targets, and integration with machine learning and pharmacokinetic/pharmacodynamic modeling. Overall, GSMM has significant potential in elucidating the critical role of metabolic changes in antimicrobial pharmacology, providing mechanistic insights that will guide the optimization of dosing regimens for the treatment of antimicrobial-resistant infections.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2667370322000121; http://dx.doi.org/10.1016/j.engmic.2022.100021; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139358209&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39628842; https://linkinghub.elsevier.com/retrieve/pii/S2667370322000121; https://dx.doi.org/10.1016/j.engmic.2022.100021
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know