Algae as a source of bionanofactory for the synthesis of ecofriendly nanoparticles
Environmental Nanotechnology, Monitoring & Management, ISSN: 2215-1532, Vol: 22, Page: 101012
2024
- 1Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Nanoparticle synthesis using biological systems has become increasingly popular because of its simplicity, cost effectiveness, and eco-friendliness. Nanoparticles have unique properties and are hence being increasingly explored for various applications, including medicine, cosmetics, agriculture, and bioremediation. In particular, the use of algae for the production of nanoparticles has recently drawn increased amounts of attention because of the possible advantages of this process over conventional methods. The current review aims to document, update, and uncover all the details pertaining to algal nanoparticle synthesis, characterization and applications. Algae have substantial economic value for large-scale manufacturing of various components. It has been used to synthesize a variety of nanoparticles, such as iron, zinc, copper, gold, and silver. Several algal metal and metal oxide nanoparticles have been shown to exhibit anticancer, antibacterial, antifungal, antibiofilm, antiplasmodial, antioxidant, and catalytic properties. Although there has been some success in obtaining nanoparticle production from algal species, there are still some unexplored facts that need to be uncovered to improve production. Therefore, this article reviews the recent advances in synthesizing and characterizing nanoparticles from algae and their potential applications.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know