Aligned microfibers interweaved with highly porous carbon nanofibers: A Novel electrode for high-power vanadium redox flow batteries
Energy Storage Materials, ISSN: 2405-8297, Vol: 43, Page: 30-41
2021
- 52Citations
- 27Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work, we propose and develop a novel electrode made of aligned microscale carbon fibers interweaved with highly porous carbon nanofibers for vanadium redox flow batteries. Such a unique combination not only endows the electrode with a high permeability due to the reduced tortuosity and large macropores, but also an ultra-large specific surface area for redox reactions. As a result, a vanadium redox flow battery equipped with the newly-developed electrode is able to achieve an energy efficiency of 79.3% at the current density of 400 mA cm −2, which is 9.9% higher than that with pure porous carbon nanofiber electrodes, and 14.1% higher than that with pure aligned fiber electrodes. More remarkably, the battery is capable of delivering a peak power density of as high as ∼1.9 W cm −2 and a limiting current density of ∼5000 mA cm −2. These results demonstrate that our strategy of interweaving porous carbon nanofibers between aligned microfibers effectively addresses the contradiction between permeability and surface area of porous electrodes, opening a new platform to fabricate high-performance electrodes for vanadium redox flow batteries.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405829721004049; http://dx.doi.org/10.1016/j.ensm.2021.08.034; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122800346&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2405829721004049; https://dx.doi.org/10.1016/j.ensm.2021.08.034
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know