Machine learning–enabled direct ink writing of conductive polymer composites for enhanced performance in thermal management and current protection
Energy Storage Materials, ISSN: 2405-8297, Vol: 71, Page: 103670
2024
- 2Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study introduces a novel approach that leverages the synergy of machine learning (ML) and Direct Ink Writing (DIW) to optimize the manufacturing feasibility of conductive polymer composites (CPCs) films. The main research focus centers on precisely fine-tuning the printing parameters to strike the perfect balance between the high loading of dendritic copper fillers and their influences on processing and composite performance properties. This pioneering combination significantly enhances the precision of the final product without resorting to time-consuming procedures. ML algorithms contributed to identifying optimal printing variables such as speed, flow pressure, and filler concentration, which helped in identifying the optimal filler content and its performance capabilities. The resulting films exhibited thermo-resistive behavior with a noticeable resistivity increase by 6-7 orders of magnitude at elevated temperatures, specifically around 100 °C. Furthermore, the study highlights remarkable strain-sensing capabilities, simultaneously showcasing a substantial increase in composite modulus. These discoveries bear substantial significance for the development of exceptionally functional thermal interface materials suitable for use in sensors, current collectors, and energy storage devices. The method presented here offers a promising pathway for advancing the fabrication and performance optimization of conductive polymer composites, opening up diverse applications in emerging technologies.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405829724004963; http://dx.doi.org/10.1016/j.ensm.2024.103670; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85200269975&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2405829724004963; https://dx.doi.org/10.1016/j.ensm.2024.103670
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know