Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm: Inverse modeling, sensitivity, and uncertainty analysis
Environmental Pollution, ISSN: 0269-7491, Vol: 285, Page: 117497
2021
- 32Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Identification of pollution point source in rivers is strenuous due to accidental chemical spills or unmanaged wastewater discharges. It is crucial to take physical characteristics into account in the estimation of pollution sources. In this study, an integrated inverse modeling framework is developed to identify a point source of accidental water pollution based on the contaminant concentrations observed at monitoring sites in time series. The modeling approach includes a Markov chain Monte Carlo method based on Bayesian inference (Bayesian-MCMC) inverse model and a genetic algorithm (GA) inverse model. Both inverse models can estimate the pollution sources, including the emission mass quantity, release time, and release position in an accidental river pollution event. The developed model is first tested for a hypothetical case with field river conditions. The results show that the source parameters identified by the Bayesian-MCMC inverse model are very close to the true values with relative errors of 0.02% or less; the GA inverse model also works with relative errors in the range of 2%–7%. Additionally, the uncertainties associated with model parameters are analyzed based on global sensitive analysis (GSA) in this study. It is also found that the emission mass of pollution source positively correlates with the dispersion coefficient and the river cross-sectional area, whereas the flow velocity significantly affects release position and release time. A real case study in the Fen River is further conducted to test the applicability of the developed inverse modeling approach. Results confirm that the Bayesian-MCMC model performs better than the GA model in terms of accuracy and stability for the field application. The findings of this study would support decision-making during emergency responses to river pollution incidents.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0269749121010794; http://dx.doi.org/10.1016/j.envpol.2021.117497; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107262772&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34380214; https://linkinghub.elsevier.com/retrieve/pii/S0269749121010794; https://dx.doi.org/10.1016/j.envpol.2021.117497
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know