Highly efficient metal-organic frameworks adsorbent for Pd(II) and Au(III) recovery from solutions: Experiment and mechanism
Environmental Research, ISSN: 0013-9351, Vol: 210, Page: 112870
2022
- 65Citations
- 31Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations65
- Citation Indexes65
- 65
- CrossRef10
- Captures31
- Readers31
- 31
Article Description
With the boom of modern industry, the demand for precious metals palladium (Pd) and gold (Au) is increasing. However, the discharge of Pd(II) and Au(III) wastewater has caused environmental pollution and shortage of resources. Here, a new metal-organic frameworks adsorbent (MOF-AFH) was synthesized to efficiently separate Pd(II) and Au(III) from the water. The adsorption behavior of Pd(II) and Au(III) was explored at the same time. When gold and palladium are adsorbed separately, the adsorption capacity of gold and palladium is 389.02 mg/g and 191.27 mg/g, respectively. The equilibration time is 3 h. When gold and palladium coexist, the adsorption capacities of Au(III) and Pd(II) are 238.71 and 115.02 mg/g, respectively. The experimental results show that the adsorption of Pd(II) and Au(III) on MOF-AFH is a single-layer chemical adsorption, which is an endothermic process. MOF-AFH has excellent selectivity and after MOF-AFH is repeatedly used 4 times, the removal effect can still reach more than 90%. The adsorption mechanisms include reduction reaction and chelation with N and O-containing functional groups on the adsorbent. There is also electrostatic interaction for Au(III) adsorption. The adsorbent can be used to efficiently recover gold and palladium from wastewater.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0013935122001979; http://dx.doi.org/10.1016/j.envres.2022.112870; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124454694&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35150714; https://linkinghub.elsevier.com/retrieve/pii/S0013935122001979; https://dx.doi.org/10.1016/j.envres.2022.112870
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know