Structural characteristics of sediment humins from South Korean lakes and their phenanthrene binding compared to other carbon sources
Environmental Research, ISSN: 0013-9351, Vol: 211, Page: 113037
2022
- 7Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Sediment humins are extremely important for binding hydrophobic organic contaminants in rivers and lakes. Nonetheless, little is known about their structure and binding. We, therefore, examined the structure and phenanthrene sorption affinity of sediment humin samples upstream, midstream, and downstream from two artificial lakes in South Korea by using the elemental 13 C-NMR analysis, Freundlich model, and Langmuir model. The characteristics and phenanthrene sorption affinity of sediment humins were also compared with those of sediment humic acids from similar origins as well as soil humins/humic acids in South Korea from previous studies by using principal component analysis. In both lakes, downstream sediment humins exhibited lower N/C, O/C, and (N + O)/C ratios, lower internal oxidation, and higher aliphaticity due to the presence of long-chain aliphatic compounds generated during anaerobic decomposition. The principal component analysis results also showed that C,H-alkyl, O-alkyl, and polar organic carbon contents were significantly different when comparing the up-mid stream and downstream sediment samples in Daecheong Lake. In addition, midstream sediment humin in Andong Lake presented higher C,H-alkyl and lower polar organic carbon contents compared to those of up-downstream samples. In both lakes, the sorption coefficient and adsorption isotherm linearity were positively correlated with the C,H-alkyl content and negatively correlated with the O-aryl content. Similar to C,H-alkyl and POC, C,H-alkyl, and (N + O)/C had an extremely high correlation coefficient when predicting the sorption coefficient (Freundlich model) and the maximum adsorption capacity (Langmuir model) of sediment humins. Sediment humins had higher C,H-alkyl contents and lower sorption coefficients than those of sediment humic acids and soil humins/humic acids. These findings provide key information for monitoring water quality and polycyclic aromatic hydrocarbon contamination in South Korean lake sediments.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0013935122003644; http://dx.doi.org/10.1016/j.envres.2022.113037; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85125670826&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35248562; https://linkinghub.elsevier.com/retrieve/pii/S0013935122003644; https://dx.doi.org/10.1016/j.envres.2022.113037
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know