Alleviating acid inhibition in anaerobic digestion of food waste: Coupling ethanol-type fermentation with biochar addition
Environmental Research, ISSN: 0013-9351, Vol: 212, Issue: Pt B, Page: 113355
2022
- 32Citations
- 38Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations32
- Citation Indexes32
- 32
- CrossRef15
- Captures38
- Readers38
- 38
Article Description
In this study, ethanol-type fermentation pretreatment and adding two types of biochar prepared at 600 °C and 1000 °C (referred to as SS600 and SS1000) were combined to alleviate acid accumulation via strengthening direct interspecies electron transfer (DIET) during anaerobic digestion of food waste. Results demonstrated that ethanol production was about 11 g/L after the ethanol-type fermentation at pH of 4–5 for 4 days, accounting for 8.9% of the influent COD of the subsequent methanogenesis. After the ethanol-type fermentation pretreatment, average methane productions of digesters with SS600 and SS1000 addition increased by 86.3% and 64.9% to 618.1 ± 30.1 and 527.3 ± 25.4 mL/g VS under solid retention time (SRT) of 25 d respectively, and the conductivity of sludge increased by 95.3% and 65.3% compared to digester without biochar addition. Furthermore, adding biochar also could accelerate the recovery of acidification digester. The relative abundance of Methanothrix performing DIET were enriched with SS600. These results suggested that coupling ethanol-type fermentation with biochar addition could strengthen DIET to resist the shocks of high organic loading rate.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S001393512200682X; http://dx.doi.org/10.1016/j.envres.2022.113355; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129801217&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35472467; https://linkinghub.elsevier.com/retrieve/pii/S001393512200682X; https://dx.doi.org/10.1016/j.envres.2022.113355
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know