Trends in microalgal-based systems as a promising concept for emerging contaminants and mineral salt recovery from municipal wastewater
Environmental Research, ISSN: 0013-9351, Vol: 232, Page: 116342
2023
- 8Citations
- 41Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
In the context of climate change leading to water scarcity for many people in the world, the treatment of municipal wastewater becomes a necessity. However, the reuse of this water requires secondary and tertiary treatment processes to reduce or eliminate a load of dissolved organic matter and various emerging contaminants. Microalgae have shown hitherto high potential applications of wastewater bioremediation thanks to their ecological plasticity and ability to remediate several pollutants and exhaust gases from industrial processes. However, this requires appropriate cultivation systems allowing their integration into wastewater treatment plants at appropriate insertion costs. This review aims to present different open and closed systems currently used in the treatment of municipal wastewater by microalgae. It provides an exhaustive approach to wastewater treatment systems using microalgae, integrating the most suitable used microalgae species and the main pollutants present in the treatment plants, with an emphasis on emerging contaminants. The remediation mechanisms as well as the capacity to sequester exhaust gases were also described. The review examines constraints and future perspectives of microalgae cultivation systems in this line of research.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0013935123011465; http://dx.doi.org/10.1016/j.envres.2023.116342; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161679264&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37290616; https://linkinghub.elsevier.com/retrieve/pii/S0013935123011465; https://dx.doi.org/10.1016/j.envres.2023.116342
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know