Selectivity and security of DC microgrid under line-to-ground fault
Electric Power Systems Research, ISSN: 0378-7796, Vol: 165, Page: 238-249
2018
- 16Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Over the recent years, low-voltage dc (LVDC) distribution systems have become increasingly interesting. One of the main problems in their diffusion is the realization of reliable protection systems ensuring selectivity and security to the loads. Several solutions to this problem are studied in the current literature and are mainly focused on the design and integration of new protection devices. Nevertheless, for some faults, it is possible to use traditional protection devices if proper control strategies are used on the power converters. In this paper, the ground fault of one of the dc poles is considered for grids operated with the neutral ground connected on the ac side and isolated on the dc side. In these conditions, if, as usual, a voltage source converter (VSC) is used as an interface between ac and dc grids, the IGBTs of the VSC are capable neither of limiting nor of blocking the fault current. In this paper, the integration of a proper control strategy implemented on the VSC with the protection devices is proposed to allow the system to interrupt, clearing the fault, saving the power converter. The proposed strategy ensures selectivity and security to the loads because it implies the interruption only of the faulty feeder of the dc microgrid. In this paper, the proposed strategy is tested by means of numerical simulations and experimental results, thus proving its good performances.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S037877961830292X; http://dx.doi.org/10.1016/j.epsr.2018.09.001; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85054029094&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S037877961830292X; https://api.elsevier.com/content/article/PII:S037877961830292X?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S037877961830292X?httpAccept=text/plain; https://dx.doi.org/10.1016/j.epsr.2018.09.001
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know