Phase change dynamics in a cylinder containing hybrid nanofluid and phase change material subjected to a rotating inner disk
Journal of Energy Storage, ISSN: 2352-152X, Vol: 42, Page: 103007
2021
- 34Citations
- 19Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this numerical study, the phase change dynamics of a 3D cylinder containing hybrid nanofluid and phase change material (PCM) is investigated with a finite element solver. The PCM consists of spherical encapsulated paraffin wax, and the flow is under the forced convection regime. The dynamic features of the phase change process are studied for different values of the Reynolds number (between Re=100 and 300), the rotational Reynolds number of the inner disk (Rew=0 and 300), and the size of the rotating disk (length between 0.1L and 0.55L; height between 0.001H2 and 0.4H2). The flow dynamics and separated flow regions are found to be greatly influenced by the rotational speed and size of the inner disk. As Re is increased, the difference between the transition times at different rotational disk speeds decreases. At Re=100, a 21% reduction in the phase transition time is observed when the inner disk rotates at the highest speed as compared to the motionless case. Up to a 26% variation in the phase transition time occurs when the size of the inner rotating disk is varied. A 5 input-1 output feed-forward artificial neural network is applied to achieve fast and reliable predictions of the phase change dynamics. This study shows that introducing rotational effects can have a profound effect on the phase change dynamics of a hybrid nanofluid system containing phase change material.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352152X21007052; http://dx.doi.org/10.1016/j.est.2021.103007; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111934349&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352152X21007052; https://dx.doi.org/10.1016/j.est.2021.103007
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know