DeepScene: Scene classification via convolutional neural network with spatial pyramid pooling
Expert Systems with Applications, ISSN: 0957-4174, Vol: 193, Page: 116382
2022
- 36Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Dissimilar to object classification, scene classification needs to consider not only the components that exist in the image but also their corresponding distribution. The greatest challenge of scene classification, especially indoor scene classification, is that many classes share the same representative components whereas the degree of similarity can be low within the same class. Some images have no clear indication that they belong to a particular class. In view of this, we propose a DeepScene model that leverages Convolutional Neural Network as the base architecture. As color cues are important for scene classification, two solutions are proposed to convert grayscale scene images to RGB images, which are replication and deep neural network based style transfer for colorization. To address the challenge of objects with varying sizes and positions in the scene, Spatial Pyramid Pooling is incorporated into the Convolutional Neural Network. The Spatial Pyramid Pooling performs multi-level pooling to enable the multi-size training of the model for improved scale and translational invariance. Ensemble learning is then adopted to boost the overall performance in scene classification. The proposed DeepScene model outshines the state-of-art methods with accuracy of 98.1% on Event-8, 95.6% on Scene-15 and 71.0% on MIT-67.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0957417421016730; http://dx.doi.org/10.1016/j.eswa.2021.116382; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122249041&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0957417421016730; https://dx.doi.org/10.1016/j.eswa.2021.116382
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know