Automatic segmentation of parallel drainage patterns supported by a graph convolution neural network
Expert Systems with Applications, ISSN: 0957-4174, Vol: 211, Page: 118639
2023
- 16Citations
- 16Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Findings from Wuhan University Update Understanding of Networks (Automatic Segmentation of Parallel Drainage Patterns Supported By a Graph Convolution Neural Network)
2022 DEC 30 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- A new study on Networks is now available. According
Article Description
Drainage pattern (DP) recognition is critical in hydrographic analysis, topography identification, and drainage characteristic detection. The traditional method is based on rule computation and self-similarity idea preliminarily performing the DP classification. However, DP segmentation is an uncertain spatial cognitive problem affected by enormous factors. To settle such a multi-conditions decision question, this study takes the segmentation of parallel drainage pattern (SPDP) as an example presenting a deep learning method, namely the graph convolution neural network (GCNN) based on Graph SAmple and aggreGatE (GraphSAGE). First, a directed graph and dual graph were used to construct a dual drainage graph recording spatial-cognition features of drainage. Second, nine drainage features were built to define the graph description from three perspectives: topological connectivity, meandering equilibrium, and directional unity. Finally, the GraphSAGE model was designed for SPDP and trained by typical samples to finish the segmentation works. The experiment examined the optimal feature combination and hyperparameter sensitivity, which can provide sufficient information for SPDP supported by GraphSAGE. Besides, our model outperformed other machine learning methods and GCNNs driven by a fixed quantity sampling mechanism and hydrological knowledge. This work provides a vital reference for hydrology research supported by combing hydrological knowledge with GCNNs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0957417422016839; http://dx.doi.org/10.1016/j.eswa.2022.118639; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85136604751&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0957417422016839; https://dx.doi.org/10.1016/j.eswa.2022.118639
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know